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Our neural network successfully adds three numbers.
In human-interpretable terms, how does it do it?
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Our causal model adds the first two inputs to form an
intermediate variable S1.
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We hypothesize that the neural representation L3 plays
the same role as S1.
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To test this, we run our causal model on [1, 3, 5] and
obtain output 9.
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And we run the causal model on [4, 5, 6] to get 15.
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Then we perform an interchange intervention targeting
the value of S1.
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This changes the value of S1 in the left example to 9.
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And this causes the model to output 14.
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Will the neural network show the same behavior?
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We process the same two examples.
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So we perform an intervention targeting L3.
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What is the effect of this intervention?
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If this leads the network to output 14, we have a piece
of evidence that L3 plays the same role as S1.
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We can repeat the same process using the hypothesis
that L1 plays the role of w .
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We first intervene on the causal model to get an
output for this intervention.
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And we check whether the output corresponds to the
output of the causal model under the aligned

intervention.
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Finally, if we intervene on L2 and find that the output
label never changes, then we have shown that it plays

no role in the model’s behavior.
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Potential causal models

• Jitter: Output invariance
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• Data augmentation:

Label invariance

12 / 32



Overview Causal abstraction IIT Boundless DAS Conclusions

Some other interventions

a b c

a b c

L1 L2 L3

y

x y z

x y z

L1 L2 L3

z

Jitter(L1)0Average(Lsubpop)

Synonym(b)
Potential causal models

• Jitter: Output invariance
• Zero-out: Info removal
• Average vector: Info

neutralization
• Data augmentation:

Label invariance

12 / 32



Overview Causal abstraction IIT Boundless DAS Conclusions

Some other interventions

a b c

a b c

L1 L2 L3

y

x y z

x y z

L1 L2 L3

z

Jitter(L1)0Average(Lsubpop)

Synonym(b)
Potential causal models

• Jitter: Output invariance
• Zero-out: Info removal
• Average vector: Info

neutralization
• Data augmentation:

Label invariance

12 / 32



Overview Causal abstraction IIT Boundless DAS Conclusions

Some other interventions

a b c

a b c

L1 L2 L3

y

x y z

x y z

L1 L2 L3

z

Jitter(L1)

0Average(Lsubpop)

Synonym(b)
Potential causal models

• Jitter: Output invariance
• Zero-out: Info removal
• Average vector: Info

neutralization
• Data augmentation:

Label invariance

12 / 32



Overview Causal abstraction IIT Boundless DAS Conclusions

Some other interventions

a b c

a b c

L1 L2 L3

y

x y z

x y z

L1 L2 L3

z

Jitter(L1)

0Average(Lsubpop)

Synonym(b)

Potential causal models

• Jitter: Output invariance
• Zero-out: Info removal
• Average vector: Info

neutralization
• Data augmentation:

Label invariance

12 / 32



Overview Causal abstraction IIT Boundless DAS Conclusions

Some other interventions

a b c

a b c

L1 L2 L3

y

x y z

x y z

L1 L2 L3

z

Jitter(L1)

0Average(Lsubpop)

Synonym(b)

Potential causal models

• Jitter: Output invariance

• Zero-out: Info removal
• Average vector: Info

neutralization
• Data augmentation:

Label invariance

12 / 32



Overview Causal abstraction IIT Boundless DAS Conclusions

Some other interventions

a b c

a b c

L1 L2 L3

y

x y z

x y z

L1 L2 L3

z

Jitter(L1)

0

Average(Lsubpop)

Synonym(b)

Potential causal models

• Jitter: Output invariance
• Zero-out: Info removal

• Average vector: Info
neutralization
• Data augmentation:

Label invariance

12 / 32



Overview Causal abstraction IIT Boundless DAS Conclusions

Some other interventions

a b c

a b c

L1 L2 L3

y

x y z

x y z

L1 L2 L3

z

Jitter(L1)0

Average(Lsubpop)

Synonym(b)

Potential causal models

• Jitter: Output invariance
• Zero-out: Info removal
• Average vector: Info

neutralization

• Data augmentation:
Label invariance

12 / 32



Overview Causal abstraction IIT Boundless DAS Conclusions

Some other interventions

a b c

a b c

L1 L2 L3

y

x y z

x y z

L1 L2 L3

z

Jitter(L1)0Average(Lsubpop)

Synonym(b)

Potential causal models

• Jitter: Output invariance
• Zero-out: Info removal
• Average vector: Info

neutralization
• Data augmentation:

Label invariance

12 / 32



Overview Causal abstraction IIT Boundless DAS Conclusions

Connections to the literature

• Constructive abstraction (Beckers et al. 2020)
• Causal mediation analysis (Vig et al. 2020)
• Role Learning Networks (Soulos et al. 2020)
• CausaLM (Feder et al. 2021)
• Amnesic Probing (Elazar et al. 2021)
• Circuits (Cammarata et al. 2020; Olsson et al. 2022; Wang et al. 2022)
• Causal scrubbing (LawrenceC et al. 2022)

13 / 32

For more:
https://ai.stanford.edu/blog/causal-abstraction/

https://ai.stanford.edu/blog/causal-abstraction/
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Findings from causal abstraction

1. Neural networks learn interpretable solutions to hierarchical equality
tasks, thereby blurring the distinction between neural and symbolic
models (Geiger et al. 2023).

2. Fine-tuned BERT models implement compositional models that
allow them to correctly handle hard, out-of-domain natural language
inference examples (Geiger et al. 2020, 2021).

3. BART and T5 use coherent entity and situation representations that
evolve as the discourse unfolds (Li et al. 2021).
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Interchange Intervention Training
(IIT)
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Method
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Suppose our network doesn’t agree with the causal
model under our intervention.
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We can correct that misalignment with interchange
intervention training.
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The causal model provides us with a true label, and a
comparison with the incorrect prediction gives us an

error signal.
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The gradients flow from this node to the top hidden
layer as usual.
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from the target example and the source example at

right.
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Some applications of IIT

1. Geiger et al. (2022b) develop IIT and use it to achieve
state-of-the-art results on the MNIST Pointer Value Retrieval task
(MNIST-PVR; Zhang et al. 2021) and the ReaSCAN grounded
language understanding benchmark (Wu et al. 2021).

2. Wu et al. (2022) augment the standard distillation objectives (Sanh
et al. 2019) with an IIT objective and show that it improves over
standard distillation techniques.

3. Huang et al. (2023) use IIT to induce internal representations of
characters in LMs based in subword tokenization, and they show
that this helps with a variety of character-level games and tasks.

4. Wu et al. (2023) use IIT to create concept-level methods for
explaining model behavior.
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Boundless Distributed Alignment
Search (DAS)
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A simple causal abstraction analysis

p q

V1 = p V2 = q

V3 = v1 ∧ v2

X1 X2

H1 = [x1;x2]W1 H2 = [x1;x2]W2

Y = [h1;h2]w+ b

W1 =
�

cos(20◦) − sin(20◦)
�

w =
�

1 1
�

W2 =
�

sin(20◦) cos(20◦)
�

b = −1.8

The high-level model does not abstract the new neural model under our
chosen alignment.
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Interchange intervention failure

An interchange intervention on the high-level model:

False True

V1 = True V2 = True

V3 = True

True True

V1 = True V2 = True

V3 = True

The aligned interchange intervention on the neural model:

0 1

H1 = 0.6 H2 = 0.94

Y = −0.26

False

1 1

H1 = 0.6 H2 = 1.28

Y = 0.08

The two models have unequal counterfactual predictions
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But the relationship holds in a non-standard basis
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Boundless DAS: Freeze the target model parameters and learn a
rotation matrix and the boundaries of the intervention to maximize

interchange intervention accuracy.
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Solution: Distributed Interchange Intervention
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Learned DAS solution transfers to many variations of the input
instructions, and even the output space.
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